Deficient p27 phosphorylation at serine 10 increases macrophage foam cell formation and aggravates atherosclerosis through a proliferation-independent mechanism.
نویسندگان
چکیده
OBJECTIVE Genetic ablation of the growth suppressor p27(Kip1) (p27) in the mouse aggravates atherosclerosis coinciding with enhanced arterial cell proliferation. However, it is unknown whether molecular mechanisms that limit p27's protective function contribute to atherosclerosis development and whether p27 exerts proliferation-independent activities in the arterial wall. This study aims to provide insight into both questions by investigating the role in atherosclerosis of p27 phosphorylation at serine 10 (p27-phospho-Ser10), a major posttranslational modification of this protein. METHODS AND RESULTS Immunoblotting studies revealed a marked reduction in p27-phospho-Ser10 in atherosclerotic arteries from apolipoprotein E-null mice, and expression of the nonphosphorylatable mutant p27Ser10Ala, either global or restricted to bone marrow, accelerated atherosclerosis. p27Ser10Ala expression did not affect cell proliferation in early and advanced atheroma but activated RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) signaling and promoted macrophage foam cell formation in a ROCK-dependent manner. Supporting the clinical relevance of these findings, human atherosclerotic coronary arteries exhibited a prominent reduction in p27-phospho-Ser10 and increased ezrin/radixin/moesin protein phosphorylation, a marker of RhoA/ROCK activation. CONCLUSION Scarce phosphorylation of p27 at Ser10 is a hallmark of human and mouse atherosclerosis and promotes disease progression in mice. This proatherogenic effect is mediated by a proliferation-independent mechanism that involves augmented foam cell formation owing to increased RhoA/ROCK activity. These findings unveil a new atheroprotective action of p27 and identify p27-phospho-Ser10 as an attractive target for the treatment of atherosclerosis.
منابع مشابه
Role of Rho-kinase and p27 in angiotensin II-induced vascular injury.
Angiotensin II enhances the development of atherosclerotic lesion in which cellular proliferation and/or migration are critical steps. Although cyclin-dependent kinase inhibitor, p27, and Rho/Rho-kinase pathway have recently been implicated as factors regulating these events cooperatively, their role in vivo has not been fully elucidated. We evaluated the contribution of p27 and Rho-kinase to a...
متن کاملSelective inactivation of p27(Kip1) in hematopoietic progenitor cells increases neointimal macrophage proliferation and accelerates atherosclerosis.
Excessive proliferation of immune cells and vascular smooth myocytes (VSMCs) contributes to atherosclerosis. We have previously shown that whole-body inactivation of the growth suppressor p27 exacerbates atherosclerosis in apolipoprotein E-null mice (apoE-/-), and this correlated with increased proliferation of arterial macrophages and VSMCs. In the present study, we postulated that targeted di...
متن کاملInhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture
Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...
متن کاملMacrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis.
RATIONALE Noncoding gene variants at the SORT1 locus are strongly associated with low-density lipoprotein cholesterol (LDL-C) levels, as well as with coronary artery disease. SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apolipoprotein B-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macro...
متن کاملHuman corneal endothelial cells employ phosphorylation of p27(Kip1) at both Ser10 and Thr187 sites for FGF-2-mediated cell proliferation via PI 3-kinase.
PURPOSE FGF-2 stimulates cell proliferation of rabbit corneal endothelial cells (rCECs) by degrading the cyclin-dependent kinase inhibitor p27(Kip1) (p27) through its phosphorylation mechanism. The authors investigated whether the cell proliferation of human CECs (hCECs) is also induced by FGF-2 stimulation through the p27 phosphorylation pathway. METHODS Expression and activation of protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2011